Simonetti, M., Cannas, DM, Just-Baringo, X., Vitorica-Yrezabal, IJ & Larrosa, I. Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nat. Chem. 10724–731 (2018).
Salazar, CA et al. Tailored quinones support high-turnover Pd catalysts for oxidative CH arylation with O2. Science 3701454–1460 (2020).
DiRocco, DA et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 356426–430 (2017).
Li, T. et al. Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization. J. Am. Chem. Soc. 1346467–6472 (2012).
Nielsen, LP, Stevenson, CP, Blackmond, DG & Jacobsen, EN Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides. J. Am. Chem. Soc. 1261360–1362 (2004).
van Dijk, L. et al. Mechanistic investigation of Rh(I)-catalyzed asymmetric Suzuki–Miyaura coupling with racemic allyl halides. Nat. Catal. 4284–292 (2021).
Camasso, NM & Sanford, MS Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 3471218–1220 (2015).
Milo, A., Neel, AJ, Toste, FD & Sigman, MS A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. Science 347737–743 (2015).
Butcher, TW et al. Desymmetrization of difluoromethylene groups by CF bond activation. Nature 583548–553 (2020).
Cho, EJ et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science 3281679–1681 (2010).
Hutchinson, G., Alamillo-Ferrer, C. & Bures, J. Mechanistically guided design of an efficient and enantioselective aminocatalytic alpha-chlorination of aldehydes. J. Am. Chem. Soc. 1436805–6809 (2021).
Schreyer, L. et al. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 362216–219 (2018).
Peters, BK et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363838–845 (2019).
Michaelis, L. & Menten, ML Die Kinetik der Invertinwirkung. Biochem. Z. 49333–369 (1913).
Blackmond, DG Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew. Chem. Int. Ed. English 444302–4320 (2005).
Mathew, JS et al. Investigations of Pd-catalyzed ArX coupling reactions informed by reaction progress kinetic analysis. J. Org. Chem. 714711–4722 (2006).
Bures, J. A simple graphical method to determine the order in catalyst. Angew. Chem. Int. Ed. English 552028–2031 (2016).
Burés, J. Variable time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. Angew. Chem. Int. Ed. English 5516084–16087 (2016).
Shi, Y., Prieto, PL, Zepel, T., Grunert, S. & Hein, JE Automated experimentation powers data science in chemistry. Acc. Chem. Res. 54546–555 (2021).
Burger, B. et al. A mobile robotic chemist. Nature 583237–241 (2020).
Bedard, AC et al. Reconfigurable system for automated optimization of various chemical reactions. Science 3611220–1225 (2018).
Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363eaav2211 (2019).
Clauset, A., Shalizi, CR & Newman, MEJ Power-law distributions in empirical data. SIAM Rev. 51661–703 (2009).
Martinez-Carrion, A. et al. Kinetic treatments for catalyst activation and deactivation processes based on variable time normalization analysis. Angew. Chem. Int. Ed. English 5810189–10193 (2019).
Bernacki, JP & Murphy, RM Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys. J. 962871–2887 (2009).
Pfluger, PM & Glorius, F. Molecular machine learning: the future of synthetic chemistry? Angew. Chem. Int. Ed. English 5918860–18865 (2020).
Segler, MHS, Preuss, M. & Waller, MP Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555604–610 (2018).
Raissi, M., Yazdani, A. & Karniadakis, GE Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 3671026–1030 (2020).
Hermann, J., Schatzle, Z. & Noe, F. Deep-neural-network solution of the electronic Schrodinger equation. Nat. Chem. 12891–897 (2020).
Shields, BJ et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 59089–96 (2021).
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596590–596 (2021).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596583–589 (2021).
Hueffel, JA et al. Accelerated dinuclear palladium catalyst identification through unsupervised machine learning. Science 3741134–1140 (2021).
Haitao, X., Junjie, W. & Lu, L. In Proc. 1st International Conference on E-Business Intelligence 303–309 (Atlantis Press, 2010).
Batista, GEAPA et al. In Advances in Intelligent Data Analysis VI (eds Fazel Famili, A. et al.) 24–35 (Springer, 2005).
Wei, J.-M., Yuan, X.-J., Hu, Q.-H. & Wang, S.-Q. A novel measure for evaluating classifiers. Expert Syst. Appl. 373799–3809 (2010).
Alberton, AL, Schwaab, M., Schmal, M. & Pinto, JC Experimental errors in kinetic tests and its influence on the precision of estimated parameters. Part I—analysis of first-order reactions. Chem. Eng. J. 155816–823 (2009).
Pacheco, H., Thiengo, F., Schmal, M. & Pinto, JC A family of kinetic distributions for interpretation of experimental fluctuations in kinetic problems. Chem. Eng. J. 332303–311 (2018).
Storer, AC, Darlison, MG & Cornish-Bowden, A. The nature of experimental error in enzyme kinetic measurements. Biochem. J 151361–367 (1975).
Valkó, É. & Turányi, T. In Lindner, E., Micheletti, A. & Nunes, C. (eds) Mathematical Modeling in Real Life Problems. Mathematics in Industry https://doi.org/10.1007/978-3-030-50388-8_3 (2020).
Thiel, V., Wannowius, KJ, Wolff, C., Thiele, CM & Plenio, H. Ring-closing metathesis reactions: interpretation of conversion-time data. Chem. Eur. J. 1916403–16414 (2013).
Joannou, MV, Hoyt, JM & Chirik, PJ Investigations into the mechanism of inter- and intramolecular iron-catalyzed [2 + 2] cycloaddition of alkenes. J. Am. Chem. Soc. 1425314–5330 (2020).
Knapp, SMM et al. Mechanistic studies of alkene isomerization catalyzed by CCC-pincer complexes of iridium. Organometallics 33473–484 (2014).
Stroek, W., Keilwerth, M., Pividori, DM, Meyer, K. & Albrecht, M. An iron-mesoionic carbene complex for catalytic intramolecular CH amination utilizing organic azides. J. Am. Chem. Soc. 14320157–20165 (2021).
Lehnherr, D. et al. Discovery of a photoinduced dark catalytic cycle using in situ LED-NMR spectroscopy. J. Am. Chem. Soc. 14013843–13853 (2018).
Ludwig, JR, Zimmerman, PM, Gianino, JB & Schindler, CS Iron(III)-catalyzed carbonyl-olefin metathesis. Nature 533374–379 (2016).
Albright, H. et al. Catalytic carbonyl-olefin metathesis of aliphatic ketones: iron(III) homo-dimers as Lewis acidic superelectrophiles. J. Am. Chem. Soc. 1411690–1700 (2019).
Janse van Rensburg, W., Steynberg, PJ, Meyer, WH, Kirk, MM & Forman, GS DFT prediction and experimental observation of substrate-induced catalyst decomposition in ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 12614332–14333 (2004).
van der Eide, EF & Piers, WE Mechanistic insights into the ruthenium-catalyzed diene ring-closing metathesis reaction. Nat. Chem. 2571–576 (2010).